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Figure S7: Visual inspection of C. glutamicum cells before and after addition of heme. Iron-
starved C. glutamicum wild type cells were cultivated in CGXIl medium (2 % (w/v) glucose, without
FeSO4) and cells were harvested at different time points before and after the addition of 4 uM heme.
Cell pellets were subsequently resuspended in Tris buffer (100 mM Tris-HCI, 1 mM EDTA, pH 8.0)
and adjusted to an ODeoo of 3.5.
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Figure S8: Growth assays revealed an increased sensitivity of C. glutamicum AhrrA against
oxidative stress. Iron-starved C. glutamicum wild type as well as the mutant strain AhrrA were
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cultivation system. Growth curves shown are based on backscatter measurements (expressed in
arbitrary units (a.u.)) of three biological replicates. The error bars represent the standard deviation
of these replicates.
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Supplementary Tables

Table S1: Bacterial strains and plasmids used in this study. Oligonucleotides used for the

construction of the plasmids are listed in Table S2.

Strain Relevant characteristics Reference

Escherichia coli

DH5a fhuA2 lac(del)U169 phoA ginV44 ®80' lacZ(del)M15 Invitrogen
gyrA96 recAT relA1 endAT thi-1 hsdR17; for general
cloning purposes

BL21(DES3) B F- ompT gal dem lon hsdSg(re-ms~) A(DE3 [lac/ (1)
lacUV5-T7p07 ind1 sam7 nin5]) [malB*]k-12(AS);
overexpression of proteins.

Corynebacterium glutamicum

C. glutamicum ATCC 13032 Biotin-auxotrophic wild type strain (2)

C. glutamicum AhrrA Derivative of ATCC 13032 with in-frame deletion of (3)
the hrrA gene (cg3247).

C. glutamicum::hrrA-C- Derivative of ATCC 13032 encoding a C-terminally This study

twinstrep twinstrep-tagged version of hrrA (cg3247).

Plasmids

Name Resistance Source

pK19 mob sacB Kanamycin (4)

pK19 mob sacB_hrrA-C- Kanamycin This study

twinstrep

14
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Table S2: Oligonucleotides used in this study.

# |Name Sequence
Construction of pK19 mob sacB_hrrA-C-twinstrep
1 | hrrA-LF-twin-strep_fw | CAAGCTTGCATGCCTGCAGGTCGACGCGGAATCGACGTCATCTTG
2 | hrrA-LF-twin-strep_rv |ACCTAAAGCCTTGCAGCAACCCCCGCTATTTTTCGAACTGCGGGTGG
3 |hrrA-RF_fw GAGCCACCCGCAGTTCGAAAAATAGCGGGGGTTGCTGCAAGGC
4 |hrrA-RF_rv ATTCGAGCTCGGTACCCGGGGATCCCCGGAATCAATACACCGGC
Amplification of DNA probes for EMSAs
5 | Phmuo (EMSA) fw GAGAAATCCTCACGCTCAC
6 | Phmuo (EMSA) fw-Cy3 | Cy3-GAGAAATCCTCACGCTCAC
7 | Phmuo (EMSA) rv GGTGGGAGCCCCAAAGTTG
8 | Poae (EMSA) fw CCCAAAGTGGTTTCCGCAGG
9 |Pcae (EMSA) fw-Cy3 | Cy3-CCCAAAGTGGTTTCCGCAGG
10 | Peae (EMSA) rv ACGCCTTTTATTCGGGTTC
11 | Ppek (EMSA) fw CTTTCTATGGAGATGATCG
12 | Ppek (EMSA) rv CGATTTAAATGGACCCTAAAC
13 |Prame(EMSA) fw CCTGCGCAAAGTTGCTCCCTG
14 | Prams (EMSA) rv CTCACAGGATACCGATCCGAAC
15 | Pegioso (EMSA) fw CGCTCCTCTGTGGGATTTGTC
16 | Pcgioso (EMSA) rv GCCTTCACTCCCTCAAAC
17 | Pxerc (EMSA) fw CTTAGGCTTGCCTCACACAC
18 | Pxerc (EMSA) rv AATGCGGAAATGCCATAAAACC
19 | Pogaao2(EMSA) fw CATAGGGGTATAGCCTTGAG
20 | Pogaso2(EMSA) rv CAGTGTGCGCAGGTCATGCC
21 | Potac(EMSA) fw GGAATACCTAAAGTCTAGGC
22 | Potac(EMSA) rv GTAGGAACGTAGGGGGTAAG
23 | Psigcias(EMSA) fw GGTCACCATAAAGGTGTGTAG
24 | Psigciaa(EMSA) fw- Cy3-GGTCACCATAAAGGTGTGTAG
Cy3
25 P:gc/katA(EMSA) rv GCCACCAAATAATCAGCCC
26 | Pgq(EMSA) fw GTTCCCGCTCACAGCTTAAC
27 | Peyo(EMSA) fw-Cy3 Cy3-GTTCCCGCTCACAGCTTAAC
28 | Pgo(EMSA) rv GGTGACTTGTCAACAAGGGG
29 |Pups (EMSA) fw GACTTGTTTACCCAAGCAATAC
30 |Pups(EMSA) rv CCGGTGAGGCAACATTTACC
31 | Phaa (EMSA) fw GTCATGATGGCGTCTCGGGC
32 | Phtaa (EMSA) rv GTAATCAACGCACAAATG

15
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Table S5: Pearson correlation for the gene expression values (TPM) between the two
biological replicates. Transcriptome expression estimates for all the three time-points and both
KO and WT conditions show high reproducibility. The genes with low expression (combined
expression in replicates < 5 TPM) were not included in this analysis.

Time Point WT KO

Oh 0.9987 0.9994
0.5h 0.9990 0.9984
4h 0.9974 0.9964
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Abstract

Heme is a multifaceted molecule. While serving as a prosthetic group for many important
proteins, elevated levels are toxic to cells. The complexity of this stimulus has shaped bacterial
network evolution. However, only a small number of targets controlled by heme-responsive
regulators have been described to date. Here, we performed chromatin affinity purification and
sequencing to provide genome-wide insights into in vivo promoter occupancy of HrrA, the
response regulator of the heme-regulated two-component system HrrSA of Corynebacterium
glutamicum. Time-resolved profiling revealed dynamic binding of HrrA to more than 200 different
genomic targets encoding proteins associated with heme biosynthesis, the respiratory chain,
oxidative stress response and cell envelope remodeling. By repression of the extracytoplasmic
function sigma factor sigC, which activates the cydABCD operon, HrrA prioritizes the expression
of genes encoding the cytochrome bci-aas supercomplex. This is also reflected by a significantly
decreased activity of the cytochrome aas oxidase in the AhrrA mutant. Furthermore, our data
reveal that HrrA also integrates the response to heme-induced oxidative stress by activating katA
encoding the catalase. These data provide detailed insights in the systemic strategy that bacteria
have evolved to respond to the versatile signaling molecule heme.



Introduction

Heme (iron bound protoporphyrin IX) is a versatile molecule that is synthesized and used by
virtually all aerobic eukaryotic and prokaryotic cells (1). It serves as the prosthetic group of
hemoglobins, hydroxylases, catalases, peroxidases, and cytochromes (2) and is therefore
essential for many cellular processes, such as electron transfer, respiration and oxygen
metabolism (3). Furthermore, salvaged heme represents the most important iron source for a
variety of pathogenic bacteria (4,5), and also non-pathogenic bacteria can meet their iron demand
by degradation of environmental heme. This becomes evident from the diverse set of heme
uptake systems and heme oxygenases that catalyze the degradation of the protoporphyrin ring
to biliverdin and the concomitant release of carbon monoxide and iron (6).

While heme represents an essential cofactor for a variety of proteins, this molecule also exhibits
severe toxicity at high concentrations. Therefore, organisms have evolved sophisticated
regulatory networks to tightly control heme uptake, detoxification (including export), synthesis
and degradation (4). Several heme-regulated transcription factors have been described, including
the heme activator protein (Hap) 1, which is an activator of genes required for aerobic growth of
the yeast Saccharomyces cerevisiae (7); the transcription factor BACH1 (BTB and CNC homology
1), which is conserved in mammalian cells (8,9); and the rhizobial Irr protein, which is a heme-
regulated member of the Fur family of transcriptional regulators (10-12).

In Gram-positive bacteria, two-component systems (TCSs) appear to play a prevalent role in
heme-responsive signaling (13,14), as exemplified by the heme sensor system HssRS of
Staphylococcus aureus and Bacillus anthracis, which controls the expression of the hrtBA operon,
encoding a heme efflux system in both species (15,16). Remarkably, several members of the
Corynebacteriaceae family, including the human pathogen Corynebacterium diphtheriae and the
biotechnological platform strain C. glutamicum, have two paralogous TCSs, namely, HrrSA and
ChrSA, dedicated to heme-responsive control of gene expression (17-20). The kinases HrrS and
ChrS were recently shown to perceive transient changes in heme availability by direct
intramembrane interactions with heme (21,22). Heme binding triggers autophosphorylation of
the sensor kinase, followed by transfer of the phosphoryl group to the cognate response
regulators HrrA and ChrA. In C. glutamicum, significant cross-phosphorylation was observed
between the closely related systems; however, this crosstalk is proofread by a highly specific
phosphatase activity of the kinases toward the cognate response regulators under non-inducing
conditions (23). While the ChrSA system appears to be mainly involved in rapid activation of the
HrtBA detoxification system (19), previous data suggest that HrrSA coordinates a homeostatic
response to heme (18). In recent studies, six direct target operons have been described for HrrA,
including genes encoding enzymes involved in heme synthesis (hemE, hemA and hemH), heme
utilization (hmuO, encoding a heme oxygenase) and the ctaE-qcrCAB operon, encoding
components of the heme-containing cytochrome bci-aas supercomplex of the respiratory chain
(18). Expression of hrrA as well as hmuO is, furthermore, repressed by the global iron-dependent
regulator DtxR in C. glutamicum under conditions of sufficient iron supply (24,25) thereby linking
iron and heme regulatory networks in this organism.

The branched electron transport chain of C. glutamicum consists of the cytochrome bci-aas
supercomplex (encoded by ctaD, the ctaCF operon, and the ctaE-qcrCAB operon) and the

3



cytochrome bd oxidase, encoded by the first two genes of the cydABDC operon (26). Although
both the cytochrome aas oxidase and the bd oxidase are involved in the establishment of a
proton-motive force (PMF), the aas oxidase is an active proton pump that is responsible for the
increased proton translocation number (6 H*/2 e’) of the cytochrome bci-aas supercomplex
compared to that of the bd oxidase (2 H*/2 e’) (26). The presence of the cytochrome bci-aas
supercomplex is a characteristic feature of almost all actinobacteria, because members of this
phylum lack a soluble cytochrome ¢ and instead harbor a diheme cytochrome c: that directly
shuttles electrons from the bci complex to the aas oxidase (27-32). Furthermore, both terminal
oxidases differ in heme content, as the bci-aas supercomplex harbors six heme molecules, while
the bd oxidase harbors only three. Surprisingly, not much is known about the regulation of
terminal oxidases in C. glutamicum. In addition to the described activation of the ctaE-qcr operon
by HrrA, the hydrogen peroxide-sensitive regulator OxyR was described as a repressor of the
cydABCD operon (33,34). Furthermore, the ECF sigma factor SigC (o) activates expression of the
cydABCD operon (33,35). For 0%, a speculated stimulus is a defective electron transfer in the aas
oxidase (35) and such a defect was observed under copper-deprivation or when heme a insertion
was disturbed, which resulted in activation of the o regulon (36,37).

Interestingly, the regulons of prokaryotic heme regulators described thus far comprise only a low
number of direct target genes, which are mostly involved in heme export (e.g., hrtBA) or
degradation (hmuO). This current picture of prokaryotic heme signaling, however, does not match
the complexity of the cellular processes influenced by heme. In this study, we performed a time-
resolved and genome-wide binding profiling of HrrA in C. glutamicum using chromatin affinity
purification and sequencing (ChAP-Seq) of HrrA in C. glutamicum showing the transient HrrA
promoter occupancy of more than 200 genomic targets in response to heme. The obtained results
emphasize that HrrSA is a global regulator of heme homeostasis, which also integrates the
response to oxidative stress and cell envelope remodeling. Transcriptome analysis (RNA-Seq) at
different time points after heme induction revealed HrrA to be an important regulator of the
respiratory chain by coordinating the expression of components of both quinol oxidation
branches as well as menaquinol reduction. Remarkably, HrrA was found to prioritize the
expression of operons encoding the cytochrome bci-aas supercomplex by repressing sigC
expression.



Methods
Bacterial strains and growth conditions

Bacterial strains used in this study are listed in Table S1. The C. glutamicum strain ATCC 13032
was used as wild type (29) and cultivations were performed in liquid BHI (brain heart infusion,
Difco BHI, BD, Heidelberg, Germany), as complex medium or CGXIl (38) containing 2 % (w/v)
glucose as minimal medium. The cells were cultivated at 30°C; if appropriate, 25 pg/ml kanamycin
was added. E. coli (DH5a and BL21 (DE3)) was cultivated in Lysogeny Broth (Difco LB, BD,
Heidelberg, Germany) medium at 37°C in a rotary shaker and for selection, 50 pug/ml kanamycin
was added to the medium.

Recombinant DNA work and cloning techniques

Cloning and other molecular methods were performed according to standard protocols (39). As
template, chromosomal DNA of C. glutamicum ATCC 13032 was used for PCR amplification of
DNA fragments and was prepared as described previously (40). All sequencing and synthesis of
oligonucleotides was performed by Eurofins Genomics (Ebersberg, Germany). For ChAP
sequencing, the native hrrA was replaced with a twin-strep-tagged version of this gene using a
two-step homologous recombination system. This system is based on the suicide vector pK19
mob-sacB (41,42), containing 500 bps flanking each site of the targeted sequence inside the
C. glutamicum genome. The pK19mob-sacB hrrA-C-twinstrep plasmid was constructed using
Gibson assembly of PCR products (primers indicated in Table S2) and the cut pK19 vector (43).

ChAP Sequencing — Sample preparation

The preparation of DNA for ChAP sequencing was adapted from (44). The C. glutamicum strain
ATCC 13032::hrrA-C-twinstrep was used for the time series experiment. A preculture was
inoculated in liquid BHI medium from a fresh BHI agar plate and incubated for 8-10 h at 30°Cin a
rotary shaker. Subsequently, cells were transferred into a second preculture in CGXIl medium
containing 2 % (w/v) glucose and 0 uM FeSO; to starve the cells from iron. Protocatechuic acid
(PCA), which was added to the medium, allowed the uptake of trace amounts of iron. From an
overnight culture, six main cultures were inoculated to an ODego of 3.0 in 11 CGXIl medium
containing 4 UM hemin as sole iron source. For the time point t = 0, the cells were added to 1 |
fresh CGXIl containing no additional iron source. After Oh, 0.5h, 4h, 9h and 24 h, cells
corresponding to an ODeoo of 3.5 in 1 | were harvested by centrifugation at 4 °C, 5000 x g and
washed once in 20 ml CGXIl. Subsequently, the cell pellet was resuspended in 20 ml CGXII
containing 1 % (v/v) formaldehyde to crosslink the regulator protein to the DNA. After incubation
for 20 min at RT, the cross linking was stopped by addition of glycine (125 mM), followed by
additional incubation of 5 min at RT. After that, the cells were washed three times in buffer A
(100 mM Tris-HCl, 1 mM EDTA, pH=8.0) and the pellets stored overnight at -80 °C. For cell
disruption, the pellet was resuspended buffer A containing “cOmplete” protease inhibitor cocktail
(Roche, Germany) and disrupted using a French press cell (SLM Ainco, Spectronic Instruments,
Rochester, NY) five times at 207 MPa. The DNA was fragmented to ~500 bp by sonication (Branson
Sonifier 250, Branson Ultrasonics Corporation, Connecticut, USA) and the supernatant was
collected after ultra-centrifugation (150.000 x g, 4 °C, 1 h). The DNA bound by the twin-Strep-
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tagged HrrA protein was purified using Strep-Tactin XT Superflow column material (IBA
Lifesciences, Gottingen, Germany) according to the supplier’s manual (applying the gravity flow
protocol, 1.5 ml column volume). Washing of the column was performed with buffer W (100 mM
Tris-HCI, 1 mM EDTA, 150 mM NaCl, pH 8,0) and the tagged protein was eluted with buffer E (100
mM Tris-HCl, 1 mM EDTA, 150 mM NaCl, pH 8.0, added 50 mM D-Biotin). After purification, 1 %
(w/v) SDS was added to the elution fractions and the samples were incubated overnight at 65°C.
For the digestion of protein, 400 pug/ml Proteinase K (AppliChem GmbH, Darmstadt, Germany)
was added and incubated for 3 h at 55 °C. Subsequently, the DNA was purified as following: Roti-
Phenol/Chloroform/Isoamyl alcohol (Carl Roth GmbH, Karlsruhe, Germany) was added to the
samplesin a 1:1 ratio and the organic phase was separated using Phase Lock Gel (PLG) tubes (VWR
International GmbH, Darmstadt, Germany) according to the supplier’s manual. Afterwards, the
DNA was precipitated by adding ice-cold ethanol (to a conc. of 70 % (v/v) and centrifugation at
16.000 x g, 4 °C for 10 min. The DNA was washed with ice-cold 70 % (v/v) ethanol, then dried for
3 hat 50 °C and eluted in dH.0.

ChAP-Seq analysis - Sequencing

The obtained DNA fragments of each sample (up to 2 ug) were used for library preparation and
indexing using the TruSeq DNA PCR-free sample preparation kit according to the manufacturer’s
instruction, yet skipping fragmentation of the DNA and omitting the DNA size selection steps
(Mumina, Chesterford, UK). The resulting libraries were quantified using the KAPA library quant
kit (Peglab, Bonn, Germany) and normalized for pooling. Sequencing of pooled libraries was
performed on a MiSeq (lllumina) using paired-end sequencing with a read-length of 2 x 150 bases.
Data analysis and base calling were accomplished with the Illlumina instrument software and
stored as fastq output files. The sequencing data obtained for each sample were imported into
CLC Genomics Workbench (Version 9, Qiagen Aarhus A/S) for trimming and base quality filtering.
The output was mapped to accession NC_003450.3 BX927147 as C. glutamicum reference
genome (www.ncbi.nlm.nih.gov/pubmed/12948626). Genomic coverage was convoluted with
second order Gaussian kernel. The kernel was truncated at 4 sigmas (that is all kernel values
positioned further then 4 sigmas from the center were set to zero) and expanded to the “expected
peak width”. The expected peak width was estimated via the following procedure: 1) all the peaks
higher than 3-fold mean coverage were detected. 2) Points at which their coverage dropped
below % of the maximal peak height were found and the distance between them was considered
as a peak width. 3) The “estimated peak width” was set equal to the median peak width. The
convolution profile was scanned in order to find points where first derivative changes its sign from
positive to negative (Figure S1). Each such point was considered as a potential peak and was
assigned with a convolution score (that is convolution with second order Gaussian kernel centred
at the peak position). Furthermore, we explored the distribution of the convolution scores. It
appeared to resemble normal distribution, but with a heavy right tail. We assumed that this
distribution is indeed bimodal of normal distribution (relatively low scores) representing ‘noise’
and a distribution of ‘signal’ (relatively high scores). We fit the Gaussian curve to the whole
distribution (via optimize.fit function from SciPy package (45)) and set a score thresholds equal
mean + 4 sigmas of the fitted distribution. Further filtering with this threshold provided estimated
FDR (false discovery rate) of 0.004-0.013 depending on a sample. Filtered peaks were normalized
to allow inter-sample comparisons. Sum of coverages of the detected peaks was negated from

6



the total genomic coverage. The resulting difference was used as normalization coefficient; that
is peak intensities were divided by this coefficient.

ChAP-Seq analysis — Estimation of confidence intervals

To compare peak intensities between the samples, we assessed the significance levels of the
detected intensity values by an extensive in silico simulation of ChAP-seq experiments along with
further peak-detection analyses.

The simulation consisted of the following steps: The reads were artificially generated from C.
glutamicum genome (NC003450.3) with the error rate (number of nucleotide mismatches) equal
to the average error rate of the real HrrA ChAP-seq reads (estimated from the mapping statistics).
The reads were taken from randomly selected spots in the genome (simulation of the non-peak
coverage) and from the regions of the detected HrrA binding peaks with the probabilities
proportional to the original peak intensities. Thus, we tried to emulate the original binding
architecture. We also added a small amount (10% of the total simulated reads) of the sequences
heavily affected by mismatches (25% mismatches for the original C. glutamicum sequences), as
we wanted to account for around 10% of the unmapped reads in the original HrrA ChAP-seq
experiments. Finally, the simulated reads were subjected to the computational peak-detection
pipeline with the same parameters as in the original analyses. As a result, we obtained the peak
intensity values for the detected peaks.

In total, we simulated 200 ChAP-seq samples, each containing 1.14M reads (the average amount
of reads in the original samples). For each of the detected peaks we estimated the variation of
the reported peak intensity among all the simulations. That is, for each peak intensity we
estimated 0.95 confidence interval, as a difference between 97.5 and 2.5 percentiles. We
discovered a strong positive correlation (0.94 Pearson) between the width of the confidence
intervals and mean intensity (Figure S2A). Therefore, we then normalized the width of the
confidence intervals to the mean intensity values. The normalized confidence interval width
(NCIW) appears to be a convenient metric as it is similar for all peaks, weakly dependent on their
intensity. However, for the strongest peaks (peak intensity > 10) the NCIW is limited by 0.2, while
for the weaker ones by 0.28 (Figure S2B). Then we convert NCIW upper limits to the minimum
confident fold changes by the following rule: min_fold = (1+NCIW/2)/(1-NCIW/2). Thus, we
conclude that for the stronger peaks minimum confident fold change (p-value < 0.05) is ~1.23,
while for the weaker peaks - ~1.33.

RNA Sequencing — Sample preparation

For RNA sequencing, C. glutamicum wild type and the AhrrA mutant strain were cultivated under
the same conditions as described for ChAP Sequencing. Both strains did not contain any plasmids
and, hence, were cultivated without addition of antibiotics in biological duplicates. After 0 h (no
heme), 0.5 h and 4 h, cells corresponding to an ODeoo of 3 in 0.1 | were harvested in falcon tubes
filled with ice by centrifugation at 4 °C and 5000 x g for 10 minutes and the pellets were stored at
-80 °C. For the preparation of the RNA, the pellets were resuspended in 800 ul RTL buffer (QIAGEN
GmbH, Hilden, Germany) and the cells disrupted by 3 x 30 s silica bead beating, 6000 rt/min
(Precellys 24, VWR International GmbH, Darmstadt, Germany). After ultra-centrifugation
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(150.000 x g, 4 °C, 1 h), the RNA was purified using the RNeasy Mini Kit (QIAGEN GmbH, Hilden,
Germany) according to the supplier’s manual. Subsequently, the ribosomal RNA was removed by
running twice the workflow of the Ribo-Zero rRNA Removal Kit [Bacteria] (lllumina, California,
USA) in succession. Between steps, the depletion of rRNA as well as the mRNA quality was
analysed using the TapeStation 4200 (Agilent Technologies Inc, Santa Clara, USA). After removal
of rRNA, the fragmentation of RNA, cDNA strand synthesis and indexing was carried out using the
TruSeq Stranded mRNA Library Prep Kit (lllumina, California, USA) according to the supplier’s
manual. Afterwards, the cDNA was purified using Agencourt AMPure XP magnetic beads
(Beckman Coulter, Indianapolis, USA). The resulting libraries were quantified using the KAPA
library quant kit (Peglab, Bonn, Germany) and normalized for pooling.

RNA-seq analysis

Sequencing reads quality was explored with the FastQC (46) tool. Since reads appeared to be of
a good quality and did not harbor significant fraction of adapters or overrepresented sequences,
no pre-processing was undertaken. Identical reads were collapsed with a custom script in order
to prevent gene levels’ misquantification caused by PCR overamplification. Reads were mapped
to the Corynebacterium glutamicum genome (BX927147) with Bowtie2 (47). Bowtie2 was run
with the following parameters: bowtie2 -1 [path to the reads, 1st mate] -2 [path to the reads, 2nd
mate] -S [path to the mappings] —phred33 —sensitive-local —local —score-min C,90 —rdg 9,5 —rfg
9,5 -a —no-unal -1 40 -X 400 —no-mixed —ignore-quals.

The reads mapped to multiple locations were split proportionally between parental genes. That
is if 3 reads are mapped to gene A and gene B, expression of gene A is 10 and expression of gene
B is 5, then 2 reads will go to gene A and 1 read to gene B. For each C. glutamicum gene (48) we
assigned an expression value equal to the average read coverage over the gene region. These
expression values were then normalized to TPM (transcripts per million) values (49).

Furthermore, we analyzed which genes are significantly differentially expressed between
conditions. We set combinatorial thresholds on normalized GEC (gene expression change)
[|exprl-expr2|/(exprl+expr2)] and MGE (mean gene expression) [ log2((exprl+expr2)/2) ] where
“exprl” is gene expression for the first condition and “expr2” for the second. Thresholds were set
in a way to achieve maximal sensitivity while keeping FDR (false discovery rate) less than 0.05.
FDR was estimated as GECintra/(GECintra + GECinter); where GECintra is a number of genes
passed the thresholds based on intrasample GEC (that is gene expression change between the
replicates for the same condition), GECinter is a number of genes passed the thresholds based on
intersample GEC (that is gene expression change between two different conditions). Threshold
function for GEC was defined as: 1 | if MGE < C; 2**(-A*MGE) + B | if MGE >= C; where A, B, Care
parameters to be adjusted. Parameters A, B, C were adjusted with genetic algorithm optimization
approach to achieve maximal sensitivity in discovery of differentially expressed genes while
keeping FDR below 0.05.

Sequencing and sequence analysis

Pooled libraries were sequenced on a MiSeq (Illumina, California, USA) generating paired-end
reads with a length of 2 x 75 bases. Data analysis and base calling were performed with the
Illumina instrument software and stored as fastq output files.
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Measurement of cell-associated hemin

C. glutamicum was cultivated in 4 uM hemin as described above (see ChAP Sequencing). To
measure the cell-associated heme pool, CGXIl minimal medium supplemented with 2 % (w/v)
glucose and 4 uM heme was inoculated to an ODeoo of 3.5. Samples were taken 0.5, 2, 4,9 and 24
hours after addition of heme. Cells were harvested, resuspended in 100 mM Tris-HCl (pH 8) and
adjusted to an ODego of 100. Cells cultivated in 4 uM FeSOa supplemented medium were taken as
a control and harvested at the same time points. Absolute spectra of cells reduced with a spatula
tip of sodium dithionite were measured at room temperature using the Jasco V560 with a silicon
photodiode detector in combination with 5 mm light path cuvettes. Absorption values at 406 nm
were normalized by subtracting the measured absorption values of Fe-cultivated cells.

Electrophoretic mobility shift assays (EMSA)

The promotor regions of HrrA target genes (100 bp) were chosen based on the ChAP-Seq analyses
and covered the maximal HrrA peak area (for primers see Table S2). For quantitative
measurements, Cy3-labelled oligonucleotides were used for the generation of the DNA
fragments. Before addition of the DNA, HrrA was phosphorylated by incubation for 60 min with
MBP-HrrSA1-248 in a ratio of 2:1 and 5 mM ATP. Binding assays were performed in a total volume
of 20 ul using 15 nM DNA and increasing HrrA concentrations (75 nM and 375 nM) for the
qualitative analyses and 10 nM DNA with increasing HrrA concentrations from 5-1000 nM for
quantitative analyses, respectively. The binding buffer contained 20 mM Tris-HCI (pH 7.5), 50 mM
KCl, 10 mM MgCI2, 5% (v/v) glycerol, 0.5 mM EDTA and 0.005% (w/v) Triton X-100. After
incubation for 20 min at room temperature, the reaction mixtures were loaded onto a 10 % native
polyacrylamide gel and subsequently separated and documented using a Typhoon TrioTM
scanner (GE healthcare). The band intensities of unbound DNA were quantified using Image
Studio Lite (Licor, Bad Homburg, Germany). The band intensities were normalized to the lane
containing no DNA and plotted against the HrrA concentration in logio scale. Apparent Kd values
were calculated based on at least 3 gels each using a sigmoidal fit and the software GraphPad
Prism 8. For the sigmoidal fit, Y=0 and Y=1 were set as top and bottom constraints. The turning
point of the curve was defined as the apparent Ka.

TMPD oxidase assay

C. glutamicum wild type strain and the AhrrA mutant were cultivated to an ODeoo of 4 in CGXII
minimal with or without the addition of 4 uM hemin. Subsequently, cells were disrupted in a
homogenisator Precellys® (VWR International GmbH, Darmstadt, Germany) using zirconia/silica-
beads (@ 0.1 mm, Roth, Karlsruhe) in 100 mM Tris-HCl (pH 7.5) buffer. Ultracentrifugation at
200,000 x g for 1 h was used for membrane isolation. The pellet was resuspended in 100 mM Tris-
HCI buffer and the protein concentration was determined using a BCA assay. The N,N,N’,N’-
Tetramethyl-p-phenylenediamine (TMPD) oxidase activity in the membrane faction was
measured spectrophotometrically at 562 nm in a TECAN Reader (Thermo Fisher Scientific,
Massachusetts, US) by injecting 200 uM TMPD (37). An extinction coefficient of 10.5 mM* cm™
was used (50). One unit of activity was defined as 1 umol of TMPD oxidized per minute. As a
control for autooxidation, a sample containing only 100 mM Tris-HCI buffer was recorded after
9



TMPD addition and substracted from the actual rates. Significance was evaluated by an unpaired
t-test with a 95% confidence interval.
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Results
Genome-wide profiling of HrrA promoter occupancy

In previous studies, a number of direct HrrA target operons were described in C. glutamicum and
C. diphtheriae, suggesting an important role of the HrrSA TCS in the control of heme homeostasis
(17-20). It has to be noted, that the membrane embedded HrrS sensor kinase is also activated by
endogenously synthesized heme (21) and that the addition of external heme leads to a boost of
the HrrSA response. In this study, we investigated the genome-wide binding profile of HrrA using
chromatin affinity purification of twin-Strep-tagged HrrA combined with DNA sequencing (ChAP-
Seq). Importanty, gPCR experiments confirmed wild-type level expression of the twin-Strep-
tagged version of HrrA.

To obtain insights into the stimulus-dependent DNA association and dissociation, C. glutamicum
cells were grown in iron-depleted glucose minimal medium, and samples were obtained before
(To) and 0.5, 2, 4, 9 and 24 h after the addition of 4 uM hemin. HrrA was purified, and the bound
DNA fragments were sequenced (Figure 1A). We obtained substantial enrichment of known HrrA
targetsin response to heme (e.g. after 0.5 hours: 5-fold hmuO, 54-fold hemE, 105-fold ctaE; Figure
1B, C, D, respectively) and identified more than 200 previously unknown HrrA-bound regions in
the C. glutamicum genome (Table S3).

As expected, the highest number of peaks was identified at the first time point after the heme
pulse (0.5 h), with 199 peaks meeting our applied threshold (distance of <800 bp to the closest
downstream or <200 bp to the closest upstream transcription start site (TSS)). In comparison, only
15 peaks showed a more than two-fold enrichment before hemin addition (To, Table S3 and Figure
S3). It has to be noted, that these 15 peaks detected at Toappear to be specific HrrA targets, since
none of them was detected in an input control sample. Overall, these data illustrate the fast and
transient DNA binding by HrrA in response to heme. In general, the majority of the discovered
HrrA binding sites were close to TSSs (Figure S4). The binding of HrrA to 11 selected targets was
confirmed by electrophoretic mobility shift assays (Figure S5), and a palindromic binding motif
was deduced (Figure 2B and Figure S6).

The HrrA binding patterns depicted in Figure 1B-D are representative of many bound regions.
Thirty minutes after the heme pulse, the average peak intensities increased approximately 2.5-
fold in comparison to those at To (Figure 2A). After 2 h of cultivation in hemin, the average peak
intensity is declining and is, after 9 hours, already below the starting level at To reaching a
minimum in stationary phase (24 h). This is likely the result of the pre-cultivation and main
cultivation under iron starvation conditions leading to a lowered intracellular heme pool. The
dissociation of HrrA from its target promoters is, consequently, caused by rapid depletion of heme
and a switch of HrrS from kinase to phosphatase state (23). Heme depletion was confirmed by
spectroscopy of C. glutamicum cells (Figure 2A, dashed line) and was also obvious upon visual
inspection (Figure S7). Of all peaks, that passed our threshold, 128 were upstream of genes
encoding hypothetical proteins, while 150 could be assigned to genes with known or predicted
function (Figure 2C). Furthermore, we assessed the significance levels of HrrA binding changes
between samples from different conditions or/and time-points. It turned out, that for the
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stronger peaks (peak intensity > 10) the minimum significant fold change (p-value < 0.05) is ~1.23,
while for the weaker peaks (peak intensity < 10) it is ~1.33 (see Material and Methods).

To analyze the synchronicity in the HrrA regulon, peak intensities were correlated over time. A
relatively high correlation between peak intensities for the time points 0.5, 2 and 4 h (Figure 2D)
showed that, the system reacted proportionally for a majority of the binding sites and the
strength of HrrA binding changed in response to heme availability. Relaxation of the system was
observed after 9 h were peak intensities correlated well with To.

The HrrSA TCS coordinates heme homeostasis by integrating the response to oxidative stress
and cell envelope remodeling

Our dataset confirmed the binding of HrrA to all previously known targets, including genes
encoding components of heme biosynthesis (hemE, hemH and hemA), degradation (hmuO), and
export (hrtBA) pathways and heme-containing complexes of the respiratory chain (ctaE-qcrCAB
operon and ctaD). A comprehensive overview of all identified HrrA targets is presented in Table
S3; selected target genes are listed in Table 1. Among the more than 180 novel targets identified
in this study, we observed HrrA binding upstream of ctaB, which encodes a protoheme IX
farnesyltransferase that catalyzes the conversion of heme b to heme o (26) and upstream of ctaC,
which encodes subunit 2 of the cytochrome aas oxidase. Remarkably, HrrA binding was also
observed upstream of the cydABDC operon, which encodes the cytochrome bd oxidase of the
respiratory chain. Altogether, this set of target genes highlights the global role of the HrrSA
system in heme-dependent coordination of both branches of the respiratory chain. The HrrA
regulon appeared to cover also the aspect of cofactor supply for the respiratory chain, as several
HrrA targets encode enzymes involved in menaquinone reduction (sdhCD, lldD and dld).

Besides the known heme biosynthesis targets (hemE, hemH and hemA), HrrA binding was also
observed upstream of a gene (hemQ) encoding a putative dismutase-family protein. However, in
actinobacteria, it was proposed that these proteins do not possess chlorite dismutase activity but
instead are essential for heme synthesis (51). Furthermore, we observed binding of HrrA
upstream of the chrSA operon encoding the second TCS involved in heme-dependent regulation
in C. glutamicum. This finding therefore confirmed the previously postulated cross-regulation of
these TCS at the level of transcription (24,52).

Furthermore, HrrA binding was also observed upstream of several genes involved in the oxidative
stress response, including katA, encoding catalase, tusG, encoding a trehalose uptake system (53),
and upstream of gapA and gapB (glyceraldehyde-3-phosphate dehydrogenase, glycolytic and
gluconeogenetic, respectively) (54,55). In line with these findings, the phenotypic analysis of a C.
glutamicum hrrA mutant revealed a significantly higher sensitivity to oxidative stress (treatment
with H,0;) in comparison to the wild type (Figure S8). These findings suggest that the HrrSA
system not only controls heme biosynthesis and degradation but also integrates the response to
heme-induced oxidative stress.
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A further important class of HrrA targets is represented by genes associated with the regulation
or maintenance of the C. glutamicum cell envelope. The gene products of these previously
unknown HrrA targets are, for instance, involved in the synthesis of peptidoglycan (murA), the
peptidoglycan precursor meso-2,6-diaminopimelate (mDAP), inositol-derived lipids (ino1) and
arabinogalactan (aftC). Furthermore, HrrA binding was revealed upstream of a number of genes
encoding global transcriptional regulators (e.g., ramA, ramB, and amtR), adding a further level of
complexity to this systemic response to heme.

Temporal dynamics of promoter occupancy reveal hierarchy in the HrrA regulon

With the time-resolved and genome-wide analysis of HrrA binding, we were also able to visualize
distinct binding patterns of HrrA in response to addition and depletion of heme. Consequently,
we asked whether the binding patterns (ChAP-Seq coverage) could provide information regarding
the apparent dissociation constant (Kq) of HrrA to specific genomic targets. We compared the in
vivo binding patterns of HrrA to ctaE, hmuO and cydAB (Figure 1, Table S3). While a comparably
high peak was observed upstream of the ctaE promoter — even before the addition of heme (To)
— the binding of HrrA to the promoter of hmuO occurred with apparently high stimulus
dependency and appeared to be rather transient, as HrrA was fully dissociated from this promoter
9 h after the addition of hemin (Figure 1BC).

Subsequently, we determined the in vitro affinity of phosphorylated HrrA to the promoter regions
of ctaE, cydAB and hmuO (Table 2, Figure S9). Consistent with the ChAP-Seq data, we measured
the highest affinity of HrrA to Pcwee With an apparent Kq of 125 nM. We therefore hypothesize that
the ctaE promoter is a prime target that is constitutively activated by HrrA (Table S3) to maintain
high gene expression of the operon encoding the bci-aas supercomplex. In line with this
hypothesis, we also found a high HrrA binding peak upstream of the other operons encoding
components of the bci-aas supercomplex (ctaD and ctaCF, Table 1 and Table S3).

In contrast, we measured an almost 3-fold higher apparent Ky (350 nM) for Pcydas, Wwhich was
consistent with the relatively transient binding pattern observed for this target. With an apparent
Kg of 196 nM, the in vitro binding affinity of HrrA to the hmuO promoter was rather high
considering the genomic coverage measured in the ChAP-Seq analysis. However, in vitro analysis
does not account for the widespread interference among regulatory networks in vivo. In the
particular example of hmuO, the pattern of HrrA binding was likely the result of interference with
the global regulator of iron homeostasis, DtxR, which has previously been described to repress
hmuO expression by binding to adjacent sites (56). Taken together, these results suggest that in
vivo promoter occupancy is not only influenced by the binding affinity of the regulator to the
particular target, but also significantly shaped by network interference. Consequently, high in vivo
promoter occupancy indicates high binding affinity, but conclusions based on weakly bound
regions may be confounded by competition with other binding factors.
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HrrA activates the expression of genes encoding components of both branches of the quinol
oxidation pathway

To evaluate how HrrA binding affects the expression of individual target genes, we analyzed the
transcriptome (RNA-Seq) of the C. glutamicum wild type strain (ATCC 13032) as well as a AhrrA
mutant (Table S4). Analogous to the ChAP-Seq experiments, RNA-Seq analysis was performed
prior to the addition of heme (To) as well as 0.5 and 4 h after the heme pulse (in medium
containing no other iron source). The RNA-Seq analysis was performed in two independent
biological replicates (for inter-replicate, see Table S5).

At To, before the addition of heme, already 212 genes showed a more that 2-fold altered
expression level in AhrrA cells compared to wild type cells (AhrrA/wt). Directly after the addition
of heme (0.5 h), the expression of 309 genes changed more than 2-fold. (Table S4, Figure 3A,
orange dots). Of these genes, 174 were upregulated and 135 were downregulated in the hrrA
deletion strain. 4 h after addition of heme, only 167 genes exhibited a greater than 2-fold increase
or decrease (scatter plots for additional time points are presented in Figure S10).

The hrrA expression decreased after 0.5 h upon the addition of heme, which was likely caused by
DtxR repression in response to increased intracellular iron levels (Figure 3B) (24). In contrast, after
4 h of cultivation, hrrA levels significantly increased, reflecting the depletion of heme as an
alternative iron source and dissociation of DtxR. Furthermore, differential gene expression
analysis revealed HrrA to be an activator of all genes encoding components of the respiratory
chain (ctaE, ctaD, ctaF and cydAB) and as a repressor of heme biosynthesis (hemA, hemE and
hemH) (Figure 3C). The impact on the cytochrome bci-aas supercomplex was also confirmed by
measuring the activity of the aas oxidase, which was about 2-fold reduced in a hrrA mutant in
comparison to the wild type when grown on heme (Figure 3D). Additionally, expression of /ldD (L-
lactate dehydrogenase) as well as sdhCD (succinate dehydrogenase) contributing to the reduced
menaquinone pool was downregulated more than three-fold upon deletion of hrrA. In addition
to these considerable differences between the wild type and the AhrrA mutant, we also observed
decreased mRNA levels of genes involved in the oxidative stress response (e.g. katA) or cell
envelope remodeling (e.g. murA) in the AhrrA mutant, suggesting HrrA to be an activator of these
targets.

In some cases, promoter occupancy by HrrA did not result in altered expression levels of the
particular target gene in a AhrrA mutant under the tested conditions (Table 1, Table S3). This
finding is, however, not surprising considering the multiplicity of signals and regulators affecting
gene expression. Under changing environmental conditions, transcription factor binding will not
necessarily always be translated in an altered gene expression of the respective target. When we
compare the results obtained from RNA-Seq and ChAP-Seq analysis, 269 genes out of 309 genes
featuring an >2-fold change in gene expression did not show HrrA binding in their upstream
promoter region. Looking at all HrrA targets (ChAP-Seq analysis) on a global scale, there is,
nevertheless, a significantly higher impact on gene expression in a strain lacking hrrA for all
targets bound by HrrA in comparison to non-targets (unbound, Figure S11). Overall, 109 out of
228 HrrA targets featured a significantly altered gene expression in the hrrA mutant (64 increased
and 55 decreased).
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HrrA determines the prioritization of terminal cytochrome oxidases by repression of sigC

The results from ChAP-Seq and RNA-Seq experiments highlight the important role of HrrA in the
control of the respiratory chain, including cofactor supply. Our data revealed that HrrA activates
the expression of genes encoding the cytochrome bci-aas supercomplex (ctaE-qcrCAB, ctaD,
ctaCF) and of cydAB, encoding the cytochrome bd branch of the respiratory chain (Figure 4, Table
S3). Remarkably, the mRNA profiles of the corresponding operons exhibited significantly delayed
activation of cydAB in response to heme, which was abolished in the AhrrA mutant (Figure 4). In
contrast, ctaE expression was significantly higher in wild type cells, even before hemin addition
(To), but showed a further induction after stimulus addition (T 0.5 h, Table S4). Notably, we also
observed binding of HrrA upstream of sigC, encoding an ECF sigma factor that was shown to be
involved in the activation of the cydABDC operon (35). The mRNA level of sigC increased more
than two-fold in the AhrrA mutant, indicating HrrA to be a repressor of this gene (Figure 4).
Consistent with this hypothesis, sigC expression was slightly decreased in response to the addition
of heme, which correlated with increased HrrA peak intensity (Figure 4F). Additionally, the higher
cydAB expression, observed in the AhrrA strain before addition of stimulus (Figure 4B) is likely the
effect of increased sigC expression (Figure 4C). Dissociation of HrrA from Psjgc at a later time point
(4 h after heme pulse) led to derepression of sigC coinciding with an increased expression of
cydAB in the wild type. Because cydAB levels were constitutively low in the AhrrA mutant in
response to heme, we hypothesized that activation by HrrA together with an additional boost by
SigC (Figure 5) leads to delayed activation of cydAB after the heme pulse. This regulation enables
cells to channel most of the available heme pool into the more efficient cytochrome bci-aas
supercomplex. The lower apparent Ky of HrrA for the ctaE promoter (125 nM) compared to Pcyaas
(350 nM) or Psigc (270 uM) also reflects this prioritization of HrrA targets (Table 2). Consequently,
this almost 3-fold decrease in affinity (apparent Kg) increases the threshold for HrrSA activity to
control these targets.

HrrA activates PTS-dependent and —independent glucose uptake

Besides the activation of all components constituting the respiratory chain, ChAP-Seq
experiments and transcriptome analysis revealed HrrA as a direct activator of genes encoding
components of the phosphotransferase (PTS) system (ptsH and ptsG) and of jo/T1 encoding
inositol permease with a reported function as a PTS-independent glucose uptake system (57).
Remarkably, the gene ppgK, encoding the polyphosphate glucokinase was among the targets with
the highest HrrA peak and showed reduced expression in the 4 h sample (Table 1 and Table S4).
These results emphasize that cellular respiration and glucose uptake is coordinated via the HrrSA
system in response to cellular heme levels.
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Discussion

In this work, we applied a genome-wide approach to study the “heme-responsive regulator” HrrA
in C. glutamicum and identified more than 200 genomic target regions of this response regulator.
This intriguingly diverse set of target genes, encoding enzymes involved in heme biosynthesis,
heme-containing proteins, and components of the respiratory chain as well as proteins involved
in oxidative stress response, glucose uptake and cell envelope remodeling, provided
unprecedented insight into the systemic response to heme coordinated by the TCS HrrSA.

In Gram-positive bacteria, TCSs appear to play a central role in transient heme sensing, and heme-
responsive systems have been described in several prominent pathogens, including
C. diphtheriae, S. aureus and B. anthracis (15-18). However, for all prokaryotic heme regulatory
systems, only a small number of target genes have been described to date, focusing on targets
involved in degradation (hmuO (18,58)), heme export (hrtBA (19,59)) or heme biosynthesis (hemA
(18,20)). Systems orthologous to HrrSA are present in almost all corynebacterial species and the
high amino acid sequence identity shared by the response regulators (87 %, between
C. glutamicum and C. diphtheriae HrrA) suggests that the important role of HrrSA in the control
of heme homeostasis is conserved. In many corynebacteria, including C. diphtheriae, control of
heme homeostasis is shaped by the tight interplay of HrrSA with a second heme-dependent
system, ChrSA. While the present study emphasized that HrrSA governs a large and complex
homeostatic response, the only known target of the response regulator ChrA in C. glutamicum is
the divergently located operon hrtBA encoding a heme export system. There is, however, also
evidence for a cross-regulation between the TCSs, not only by cross-phosphorylation but also on
the transcriptional level (23,24). In C. diphtheria, evidence for more overlap between the regulons
of the TCSs has been provided, since both response regulators were shown to control a common
set of target genes including hrtBA, hemA and hmuO (20,60). Genome-wide analysis of these
systems have, however, not been performed so far and in vitro protein-DNA interaction studies
may not necessarily reflect the in vivo promoter preferences of these highly similar systems.

Coping with heme stress

While being an essential cofactor for many proteins, heme causes severe toxicity to cells at high
levels (4). In mammalian cells, the BACH1 regulator is inactivated by heme binding and plays a key
role in maintaining the balance of the cellular heme pool (8,61). Heme oxygenases are targets of
various heme-dependent regulators (18,62,63), and consistent with this principle, the
mammalian HMOX1 gene, encoding an NADPH-dependent oxygenase, is regulated by BACH1
(61). Other identified BACH1 targets are involved in redox regulation, the cell cycle, and apoptosis
as well as subcellular transport processes (9,64,65).

Although neither the regulator nor the constitution of the regulon is conserved, the responses of
BACH1 and HrrSA share a similar logic. Analogous to eukaryotic BACH1, we observed HrrA-
mediated activation of genes involved in the oxidative stress response, including katA, which
appears to be required to counteract oxidative stress caused by elevated heme levels (Figure S8).

Remarkably, HrrA binding was also observed upstream of both gapA and gapB, which encode
glyceraldehyde-3-phosphate  dehydrogenases (GapDHs) involved in glycolysis and
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gluconeogenesis, respectively. Previous studies in baker’s yeast and mammalian cells have
revealed that oxidative stress may block glycolysis by inhibiting GapDH (55,66). Furthermore,
GapDH of C. diphtheriae was recently shown to be redox-controlled by S-mycothiolation (67).
Slight activation of gapA by HrrA may thus counteract an impaired glycolytic flux under conditions
of heme stress.

Furthermore, several HrrA targets play a role in the biosynthesis and remodeling of the
corynebacterial cell envelope, including ino1, which is required for the synthesis of inositol-
derived lipids (68), lysC, providing the peptidoglycan precursor meso-2,6-diaminopimelate
(mDAP), and murA (Table 1). Taken together, these insights emphasize the important role of the
HrrSA system in the control of heme stress responses.

From networks to function

Genome-wide analysis of regulatory networks may provide important hints towards the
physiological function of genes. An example is provided by the HrrA-dependent regulation of
cg2079 (hemQ), described in this study (Table 1). In actinobacteria, it was recently proposed that
these proteins inherit an essential role in heme biosynthesis (51,69). The finding that HrrA binds
to the promoter of this gene and represses its expression supports a role of HemQ in heme
biosynthesis in C. glutamicum. Among the direct targets of HrrA are many further targets
encoding proteins of unknown function, including several ABC transport systems with a potential
role in heme uptake or export. Therefore, this dataset provides guidance for further functional
analysis of these HrrA targets to decipher their role in heme homeostasis.

Coordinated control of the respiratory chain

Among the most significantly affected targets in the AhrrA mutant were many genes encoding
components of the respiratory chain (26). These genes comprise all the genes constituting the
cytochrome bci-aas branch of the respiratory chain (ctaE-qcrCAB, ctaCF and ctaD) (70); genes
encoding the cytochrome bd branch (cydAB (26)); ctaA (71) and ctaB (72), encoding enzymes
responsible for heme a synthesis; and /ldD and dld, encoding lactate dehydrogenases that
contribute to the reduced menaquinone pool (26) (Figure 4, Figure S12 and Table S3).

In a recent study, Toyoda and Inui described the ECF sigma factor o to be an important regulator
of both branches of the C. glutamicum respiratory chain. The ctaE-qcrCAB operon was shown to
be significantly downregulated after ¢ overexpression due to binding of the sigma factor to the
antisense strand of the promoter (35). Here, we demonstrated that this repression is
counteracted by HrrA, which not only represses sigC but also activates ctaE-qcrCAB expression.
While the two proteins have antagonistic effects on the expression of the supercomplex, both ¢¢
and HrrA positively regulate the cyd operon, encoding the cytochrome bd branch of the
respiratory chain (Figure 5).

Interestingly, a hierarchy in the regulon was reflected by the differences in the apparent Kgvalues
of HrrA with P¢da and Psigc, which were two-fold lower than those with the promoter of ctakE.
These findings were also consistent with the ChAP-Seq experiments, where the peaks upstream
of ctaE and ctaD were among the highest peaks at To and after 0.5 h (Figure 4A). These data
suggest that under conditions of sufficient heme supply, production of the cytochrome bci-aas
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supercomplex is preferred, which is highly effective but requires the incorporation of six heme
molecules (in contrast to only three molecules for the synthesis of the bd oxidase). Repression of
sigC by HrrA and the relatively low affinity to the cydAB promoter results in delayed production
of the bd branch. Under the applied aerobic conditions, available heme is thus first channeled to
the cytochrome bci-aas supercomplex before the cytochrome bd oxidase is used, which is less
efficient but has a higher oxygen affinity. Remarkably, HrrA was also found to activate expression
of genes involved in PTS-dependent (ptsH and ptsG) and —independent (iolT1) glucose uptake
thereby ensuring a high glucose uptake rate under conditions of active cellular respiration.

Interference with other regulatory networks

Deletion of the hrrA gene led to more than 2-fold upregulation of 174 genes, while 135 genes
were downregulated after the addition of heme. Several other genes were significantly affected
but to a lesser extent. Remarkably, among the direct target genes controlled by HrrA, we
identified several prominent global regulators, including the regulators of acetate metabolism
ramA and ramB (73,74), and amtR encoding the master regulator of nitrogen control (75).
Furthermore, cpdA encoding a cAMP phosphodiesterase playing a key role in the control of
cellular cAMP levels in C. glutamicum (76) was found to be under direct control of HrrA. These
examples illustrate the profound influence of HrrA on cellular networks and the systemic
response cells have programmed to respond to heme availability.

Conclusion

Genome-wide analyses of targets controlled by prokaryotic transcription factors will change our
view on many systems we believe to know. In this study, we provide an unprecedented insight
into the systemic response to heme coordinated by the TCS HrrSA. Given the many properties of
this molecule, the complexity of this response is actually not surprising but paves the way for
further functional analysis of HrrA targets with so far unknown functions in heme homeostasis.
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Tables

Table 1: Selected target genes of HrrA. This table summarizes results from the HrrA ChAP-Seq
analysis of the C. glutamicum strain ATCC 13032::hrrA-C-twinstrep and the transcriptome analysis
of C. glutamicum wild type and strain AhrrA (complete datasets are provided in Table S3 and S4,
respectively). For both experiments, cells were grown on glucose minimal medium and 4 M heme
(see Material and Methods).

Locus Gene Annotation Dist. Peak logz(AhrrA/wt)® | loga(AhrrA/wt)©

tag name TSS* | intensity® T0.5h T 4h

Heme homeostasis/metabolism

cg2445 hmuO Heme oxygenase 43 5.4 -3.1 -3.8

cg0516 hemE Uroporphyrinogen decarboxylase 17 54 3.1 2.2

cg0497 hemA Glutamyl-tRNA reductase -162 13 0.7 1.0

cg0517 hemY Protoporphyrinogen oxidase 429 3.0 2.8 1.6

cg2079 hemQ Putative chlorite dismutase-family 19 2.8 1.8

(?) protein, conserved

cg3156 htaD Secreted heme transport-associated -108 15 -0.3 -1.1
protein

cgl734 hemH Ferrochelatase 21 41 4.0 2.2

cg3247 hrrA Heme-dependent response 108 3.7 n.d. n.d.
regulator

cg2201 chrs Heme-dependent histidine kinase 32 2.5 -0.4 1.3
(chrSA operon)

€g2202 hrtB Heme exporter (hrtBA operon) 78 2.5 -1.0 4.3

Respiratory chain

cg2406 ctaE Cytochrome aas oxidase, subunit 3 307 105 -1.7 -0.8
cg2780 ctaD Cytochrome aas oxidase, subunit 1 197 36 -1.1 -0.9
cgl1301 cydA Cytochrome bd oxidase 192 11 -0.7 -2.6
€g2409 ctaC Cytochrome aa3 oxidase, subunit 2 47 22 -1.4 -1.0
cgl773 ctaB Protoheme IX farnesyltransferase 667 7.9 0.4 -1.4
cg0445 sdhC Succinate:menaquinone 83 38 -1.7 -1.6
oxidoreductase, cytochrome b
subunit
cg3226 L-lactate permease, operon with 533 5.5 -1.7 0.9
IldD
Glucose uptake
cg2121 ptsH Phosphocarrier protein HPr, general -70 2.1 -1.2 -0.3
component of PTS
cgl537 ptsG Glucose-specific EIIABC component 70 1.6 -1.1 -0.1
EllGIc of PTS
cg2091 ppgG Polyphosphate glucokinase 199 266 0.2 -0.8
cg0223 iolT1 Myo-Inositol transporter 1, 73 2.0 -1.0 -0.7

alternative glucose uptake system

Signal transduction

cg0986 amtR Master regulator of nitrogen 366 1.8 0.3 0.1
control, repressor, TetR-family

Cg2461 benR Transcriptional regulator, LuxR- 229 5.6 -0.1 -1.2
family
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cg2761 cpdA cAMP phosphodiesterase 309 4.2 0.4 -0.5

cg0309 sigC Extracytoplasmid-function o factor, 29 19 2.1 0.6
control of branched quinol oxidation
pathway

cg0444 ramB Transcriptional regulator, involved in 83 38 -0.7 -0.6
acetate metabolism

cg2831 ramA Transcriptional regulator, acetate -10 2.1 -0.5 0.6

metabolism, LuxR-family

Oxidative stress

cg0310 katA Catalase 132 19 -0.7 -1.2

cg0831 tusG Trehalose uptake system, ABC-type, -30 1.8 0.0 -0.2
permease protein

cgl791 gapA Glyceraldehyde-3-phos. 86 3.9 -0.3 -0.4
dehydrogenase, glycolysis

cg1069 gapB Glyceraldehyde-3-phos. 175 2.4 1.6 -0.1

dehydrogenase, gluconeogenesis

Cell envelope

cg2077 aftC arabinofuranosyltransferase 271 3.0 -0.3 -0.2

cg3323 inol D-myo-inositol-1-phosphate -46 4.2 1.7 0.6
synthase

cg0337 whcA WhiB homolog, role in SigH- -21 2.1 -0.5 -0.7
mediated oxidative stress response

cg0306 lysC Aspartate kinase 32 13 0.7 0.1

cg0422 murA UDP-N- 591 3.5 -0.3 -0.1
acetylenolpyruvoylglucosamine
reductase

3 Distance of the HrrA binding peak, identified via ChAP-Seq, to the start codon (transcription
start site, TSS)

b) the corresponding peak intensity

°) Relative ratio of the transcript levels of the AhrrA deletion mutant compared to the wild type
(logz fold change). The values are derived from a comparison between the two strains 0.5 and
4 h after hemin addition. The loga(AhrrA/wt) value for was not determined for the deleted hrrA
gene (n.d.).
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Table 2: Apparent Kyvalues of HrrA to the promoters of hmuO, ctak, sigC and cydA. The affinity
of phosphorylated HrrA to the indicated regions was measured using purified protein in increasing
concentrations and its ability to shift 10 nM DNA fragments of approximately 100 bp size covering
the maximal ChAP-Seq peak (for detailed information, see Figure S9).

Promoter Function Apparent K4 95% confidence R? Peak intensity
value (nM) interval (nM) after hemin
addition (ChAP-
Seq)
Phmuo Heme oxygenase 196 182-212 0.95 10
Pctae Cytochrome aas oxidase 125 117-132 0.97 53
Psigc ECF sigma factor o© 271 247-299 0.96 25
Pcyaa Cytochrome bd oxidase 350 318-386 0.96 18
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Figures and Figure legends
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Figure 1: Genome-wide profiling of HrrA binding in response to addition of external heme. (A)
ChAP-Seq analysis of the C. glutamicum strain ATCC 13032::hrrA-C-twinstrep grown in iron-
depleted glucose minimal medium before and after addition of 4 uM hemin. The experimental
approach is briefly depicted: Cells were harvested at the indicated time points, twin-Strep tagged
HrrA was purified and co-purified DNA was sequenced to identify HrrA genomic targets. This
approach resulted in the identification of more than 200 genomic regions bound by HrrA upon
addition of hemin after 30 minutes. Exemplarily shown is the HrrA binding to regions upstream
of operons involved in (B) the respiratory chain (ctaE), (C) heme degradation (hmuQ) and (D)
heme biosynthesis (hemE).

28



A B

81 -® - Abs. at 406 nm (hemin) [ 0-3 o
%‘ B Average peak intensity Q
c 3 5
o 6- -0.2 - 21 F-value: 1.6 x 10
= Q
£ o
% . £
il I B =
8 4 K ‘\\ 0.1 = a1l
] ’
g 2 ANC T TT A
A
g 2 -Doi 0 CcA---EAAEI_f—‘,- TC
> ~ I TANMTDOMNODO ™~ NMSSLWL
< - . = L 2Ot ik ol ol e
0 0.5 2 4 9 24
Time after stimulus (h)
Transcription (sigma factors, RNA processing/modification)
) ) | =150 genes / 208 peaks
Protein secretion
Nucleotide transport and metabolism
Lipid transport and metabolism ———_ Post-translational modification
Inorganic ion transport and metabolism \ ks Translation
Protein turnover and chaperones \\ ~—— Cell wall/membrane/envelope biogenesis

Coenzyme transport and metabolism
Inorganic ion transport, metabolism, and storage ——

Signal transduction mechanisms
DNA replication, recombination, repair, and degradation —

Translation, ribosomal structure and biogenesis — _
- —— Carbon source transport and metabolism

Respiration and oxidative phosphorylation — {g

Heme homeostasis

Amino acid transport and metabolism

Transport and metabolism of further metabolites ———— L Central carbon metabolism

D E

Oh 0.5h 2h 4h 9h

10 150- . ol
A E. ot
088 = — hmuo
o WEE |2 e -
078 ¢
S c
- EEE
053 & %
« [Nl
045 / :
A —————————
. 0.3 e
9". . 0 0 05 2 4 9 24

Time after stimulus (h)

Figure 2: ChAP-Seq analysis revealed HrrA as a global regulator of heme homeostasis in C.
glutamicum. (A) HrrA binding in response to the addition of hemin. The bar plot reflects the
average peak intensities among detected peaks in ChAP-Seq experiments (<800 bp to the next
TSS). The binding was correlated with the amount of cell-associated hemin (dashed line),
measured at corresponding time points by spectroscopy as described in Material and Methods.
(B) A binding motif was deduced from the sequences of the top 25 peaks (To.5) using MEME v.5
analysis (http://meme-suite.org). (C) Pie chart presenting HrrA targets, which can be attributed
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to known functional categories (total of 272 genes, among which 128 encode proteins of
unknown function, e.g., target genes within the CGP3 prophage region were excluded). For a
complete overview of HrrA targets, see Table S3. (D) Proportional behavior of the HrrA regulon.
For each peak that passed the threshold (distance of <800 bp to the closest downstream or <200
to the closest upstream transcription start site) at time point A, the highest peak in the same
region (+ 50 nucleotides from the center of the peak) was selected for time point B and vice versa.
Thus, ‘paired’ peaks for these two time points were obtained, and the Pearson correlation of the
intensities of all paired peaks was calculated for all six time points. (E) Peak intensities of selected
HrrA targets over time, as identified by ChAP-Seq.
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Figure 3: Differential gene expression analysis of wild type C. glutamicum and a AhrrA mutant.
(A) Differential gene expression analysis (RNA-Seq) revealed 120 upregulated and 154
downregulated genes in the hrrA deletion strain compared to the wild type (in transcripts per
million, TPM) after 30 minutes of cultivation in iron-depleted glucose minimal medium containing
4 uM heme. (B) Expression levels of hrrA (TPM) 0, 0.5 and 4 h after the addition of hemin. A
scheme depicts HrrA autoregulation and iron-dependent DtxR repression (24). (C) Impact of hrrA
deletion on the transcript levels of six selected target genes at three different time points (0 h,
0.5 h, 4 h; orange: HrrA acts as a repressor, turquoise: HrrA acts as an activator). (D) Measurement

30



of cytochrome aas oxidase activity using the TMPD oxidase assay in C. glutamicum wild type and
AhrrA grown with or without 4 uM heme.
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Figure 4: HrrA prioritizes the expression of genes encoding components of the bci-aas
supercomplex. Depicted are HrrA binding peaks as identified by ChAP-Seq analysis (Figure 1 and
2) in comparison to the normalized coverage of RNA-Seq results (wild type and the AhrrA mutant)
for the genomic loci of ctaE (A, D), sigC (B, E) and cydA (C, F). D-F: HrrA binding (max. peak
intensities measured by ChAP-Seq experiments) and the mRNA levels (in transcripts per million,
TPM) of the respective genes in the AhrrA strain as well as in wild type C. glutamicum cells 0, 0.5
and 4 h after the addition of hemin.
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Figure 5: Model of heme-responsive control of components of the respiratory chain by HrrSA.
The results of this study reveal HrrSA as a global regulator of heme homeostasis coordinating the
expression of genes involved in heme biosynthesis, oxidative stress responses, glucose uptake
and cell envelope remodeling. Genes encoding the components of the branched respiratory chain
of C. glutamicum comprise an important part of the HrrA regulon. While HrrA acts as an activator
of almost all components (ctaE-qcrCAB, ctaB, cydAB), it represses transcription of the sigC gene
encoding an important sigma factor required for cydAB expression. This regulatory network
architecture consequently confers prioritization to the synthesis of the more efficient proton
pump, the cytochrome bci-aas supercomplex. Bordered boxes, b, ¢, a, d: heme b, heme ¢, heme
a, heme d.
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Table S4: Filtered dataset of time r:
(w/v) glucose and 4 uM hemin and
(red) are shown (in transcripts per r
fold altered fold-change in one of tt

cg0012 SSuR
cg0061 rodA
cg0160

cg0161

cg0162

cg0163

cg0165

cg0230 gltD

cg0256

cg0314 brnF
cg0315 brnE
cg0318 arsC1 (arsB2)
cg0319 arsC2 (arsX)
cg0421 wzx

cg0445 sdhC sdhCD
cg0446 sdhA
cg0447 sdhB
cg0455

cg0456

cg0463 csoR
cg0464 COpA (ctpA, ctpV)
cg0466 htaA
cg0635 creA
cg0676

cg0683

cg0755 metY
cg0793

cg0898 pdxS
cg0922

cg0923

cg0926

cg0927

cg0951 accD3
cgl120 ripA

cgl1225 benk3 (pcak)
cgl226 pobB (pobA)
cgl313

cg1405

cglall rbsA




cgla12 rbsC
cgld24 lysE
cgl425 lysG
cg1537 ptsG
cgl555

cgl695

cg1705 arsB1 (arsC2)
cgl738 acnR
cgl759

cgl760 sufUu
cgl761 sufs
cgl762 sufC
cgl763 sufD
cgl778 zwf
cgl779 opcA
cg1780 pgi (devB)
cgl787 pbpc
cgl861 rel
cgl1962

cg2012

cg2014

NCgl1729

cg2106

cg2117 ptsl
cg2118 fruR
cg2119 pfkB (fruk)
cg2120 ptsF
cg2121 ptsH
cg2204 hrtA
cg2329

cg2381

cg2397

cg2398 plsC
cg2403 qcrB
cg2404 qcrA (qcrAl)
cg2405 gcrC
cg2406 ctak
cg2408 ctaF
cg2409 ctaC
cg2438

cg2445 hmuO
cg2559 aceB
cg2560 aceA
cg2624 pcaR
cg2625 pcaF




cg2626 pcaD
cg2629 pcaB
cg2630 pcaG
cg2636 catAl (catA)
cg2638 benB
cg2639 benC
cg2674

cg2675

cg2676

cg2677

cg2678

cg2697

cg2732 gntV (gntK)
cg2739

cg2780 ctaD
cg2810 cynT
cg2833 cysK
cg2836 sucD
cg2838

cg2867 mpx
cg2925 ptsS
cg2939 siaG
€g2940 sial
cg3101

cg3109

cg3112 cysZ
cg3141 hmp
cg3145

cg3176

cg3213

cg3216 gntP
cg3226

cg3227 IldD
cg3234

NCgl2845

cg3277

cg3280

NCgl2858a

cg3281 copB
cg3282

NCgl2861

cg3284 copS (cgtS9)




cg3285 copR (cgtR9)
cg3286

cg3287 copO

cg3334 cepA

cg3374 cyel

cg3385 catA3 (rhcD2)
cg3387 iolT2

cg3399

cg3402




esolved transcriptome analysis of C. glutamicum wild type and AhrrA with genes showing at lea
harvested 0 h, 0.5 h and 4 h after hemin addition. Column A and B show the gene locus (ID) and ge
nillion, mean of two biological replicates). Column J-L show the log2-fold change of AhrrA in comp
1e measured time points and for a p-value <0.05.

sulphonate sulphur utilization transcriptional regulator SsuR, activator of sulfonateester
utilization, ROK-family, loss causes inability to utilize alkylsulfonates

putative FTSW/RODA/SPOVE-family cell cycle protein

hypothetical protein

putative membrane protein

putative membrane spanning protein

putative N-acetylglucosaminyltransferase

putative ABC-2-type transporter

glutamine 2-oxoglutarate aminotransferase NADPH small subunit, also glutamate synthase
(EC:1.4.1.13)

putative protein, conserved

branched chain amino acid exporter lle, Leu, Val, Met, large subunit

branched chain amino acid exporter lle, Leu, Val, Met, small subunit

arsenite permease, arsenical resistance-3 (ACR3)-family

arsenate reductase, arsenical pump modifier (EC:1.20.4.1)

putative translocase involved in export of a cell surface polysaccaride, horizontally transferred

succinate:menaquinone oxidoreductase, cytochrome b subunit
succinate:menaquinone oxidoreductase, flavoprotein subunit
succinate:menaquinone oxidoreductase, iron-sulfur protein subunit

putative permease, major facilitator superfamily

putative permease, major facilitator superfamily

transcriptional repressor during copper starvation

copper-transporting P-type ATPase (EC:3.6.3.4)

secreted heme transport-associated protein

putative NAD+-dependent 4-hydroxybenzaldehyd dehydrogenase subunit (EC: 1.2.1.64), (N.
Kallscheuer: why only 107 aa; too short)

hypothetical protein, conserved

putative permease

O-acetylhomoserine sulfhydrylase EC:2.5.1.49, loss causes methionine auxotrophy
putative secreted protein

pyridoxal 5-phosphate PLP synthase subunit

putative secreted siderophore-binding lipoprotein

putative membrane protein

putative putative iron-siderophore transporter, permease subunit

putative ABC-type putative iron-siderophore transporter, permease subunit
acetyl-coenzyme A carboxylase carboxyl transferase (EC:6.4.1.2)

transcriptional regulator of iron proteins and repressor of aconitase, AraC-family
putative benzoate transport transmembrane protein

4-hydroxybenzoate 3-monooxygenase (EC:1.14.13.2)

putative secreted lipoprotein

putative cytoplasmic siderophore-interacting protein

ribose/xylose transporter, ABC-type sugar aldose transport system, ATPase component (TC
3.A.1.2.1)




ribose/xylose transporter, ABC-type transport system, permease component (TC 3.A.1.2.1)

lysine efflux permease

transcriptional regulator of lysE, LysR-family

glucose-specific EIABC component EllGIc of PTS EC:2.7.1.69 fructose-specific enzyme Il BC
(EllFru) component of PTS (EC:2.7.1.69)

putative superfamily | DNA or RNA helicase

putative plasmid maintenance system antidote protein, HTH-motif XRE-family

arsenite permease, arsenical resistance-3 ACR3-family

transcriptional regulator, represses aconitase, TetR-family

putative Fe-S cluster assembly protein, part of the sufBDCSU response

cysteine desulfhydrase

Fe-S cluster assembly protein

Fe-S cluster assembly ATPase

Fe-S cluster assembly membrane protein

glucose-6-phosphate dehydrogenase (EC:1.1.1.49)

putative subunit of glucose-6-phosphate dehydrogenase

6-phosphogluconolactonase (EC:3.1.1.31)

phosphoenolpyruvate carboxylase (EC:4.1.1.31)

ppGpp synthetase, ppGpp pyrophosphorylase (EC:2.7.6.5)

putative membrane protein CGP3 region

putative secreted protein CGP3 region

hypothetical protein CGP3 region

hypothetical protein CGP3 region

hypothetical protein, conserved

El enzyme, general component of PTS (EC:2.7.3.9)

transcriptional regulator of sugar metabolism, presumably fructose responsive, DeoR-family

1-phosphofructokinase (EC:2.7.1.56)

fructose-specific enzyme Il BC component of PTS (EC:2.7.1.69)

phosphocarrier protein HPr, general component of PTS

ABC-type heme transport system, ATPase component

putative coenzyme F420-dependent N5,N10-methylene tetrahydromethanopterin reductase or
related flavin-dependent

hypothetical protein, conserved

putative membrane protein

1-acyl-sn-glycerol-3-phosphate acetyltransferase

cytochrome bcl complex, cytochrome b subunit

cytochrome bcl complex, Rieske iron-sulfur protein

cytochrome bcl complex, diheme cytochrome cl subunit

cytochrome aa3 oxidase, subunit 3

cytochrome aa3 oxidase, subunit 4

cytochrome aa3 oxidase, subunit 2

hypothetical protein

heme oxygenase

malate synthase (EC:2.3.3.9), part of glyoxylate shunt

isocitrate lyase (EC:4.1.3.1), part of glyoxylate shunt

transcriptional repressor involved in metabolism of 4-hydroxybenzoate, protocatechuate and p-
cresol, IcIR-family

B-ketoadipyl-CoA thiolase (EC:2.3.1.174)




B-ketoadipate enol-lactone hydrolase (EC:3.1.1.24)

B-carboxy-cis,cis-muconate cycloisomerase (EC:5.5.1.2)

protocatechuate dioxygenase a subunit (EC:1.13.11.3)

catechol 1,2-dioxygenase (EC:1.13.11.1)

benzoate dioxygenase small subunit (EC:1.14.12.10)

benzoate 1,2-dioxygenase ferredoxin reductase subunit (EC:1.18.1.3)

putative alkylhydroperoxidase AhpD-family core domain

putative ATPase component of ABC-type transport system, contains duplicated ATPase domains

putative ABC-type dipeptide/oligopeptide/nickel transport systems, permease component

putative ABC-type dipeptide/oligopeptide/nickel transport system, permease component

putative ABC-type dipeptide/oligopeptide/nickel transport systems, secreted component

putative single-strand DNA binding protein

putative gluconokinase (EC:2.7.1.12)

putative permease of the major facilitator superfamily

cytochrome aa3 oxidase, subunit 1

high affinity cysteine importer

O-acetylserine thiol-lyase, cysteine synthase (EC:2.5.1.47), loss causes cysteine auxotrophy

succinyl-CoA synthetase a subunit, ADP-forming (EC:6.2.1.5)

putative dithiol-disulfide isomerase

mycothiol peroxidase, GSH peroxidase-family (EC:1.11.1.9)

sucrose-specific EIIABC component EllSuc of PTS fructose-specific enzyme Il BC (ElIFru)
component of PTS (EC:2.7.1.69)

ABC-Transporter for sialic acid, fused permease and ATPase components

ABC-Transporter for sialic acid, contain duplicated ATPase domains

putative permease

putative membrane protein

Sulfate transporter, loss causes sulfide/cysteine auxotrophy

flavohemoprotein

BglG in CgR is 93 AA longer (belongs to BglG?), putative pseudo-gene

putative membrane protein

putative secreted protein

gluconate permease, gluconate:H+ symporter GntP-family

L-lactate permease, operon with IldD, MFS-type

menaquinone-dependent L-lactate dehydrogenase operon with cg3226

putative metal-dependent amidase/aminoacylase/carboxypeptidase

hypothetical protein

putative protein, ACR, double-stranded B-helix domain

putative secreted protein, horizontally transferred gene

hypothetical protein

Cu2+/cation-transporting ATPase transmembrane protein, horizontally transferred gene

putative Cu2+/heavy metal binding transport protein, horizontally transferred gene

hypothetical protein

two component sensor kinase, copper homeostasis, horizontally transferred gene




two component response regulator, copper homeostasis, horizontally transferred gene

putative secreted protein of unknown function, horizontally transferred gene

secreted multicopper oxidase, horizontally transferred gene

putative toxine efflux permease, MFS-type

putative NADH-dependent flavin oxidoreductase, Old Yellow Enzyme family, probably involved in
oxidative stress response

catechol 1,2-dioxygenase (EC:1.13.11.37)

myo-Inositol transporter 2, MFS-type

putative permease of the major facilitator superfamily

putative copper chaperone or Hg2+ permease, MerTP-family




ist two-fold alteration in gene expression. Wild type cells and a AhrrA strain were cultivated in CG
ine name. In green (D-F) and red (G-1), the measured mRNA levels of the corresponding genes in th:
iarison to the wild type after 0 h, 0.5 h, or 4 h of incubation in hemin containing medium. The prese

mRNA wt T=0h |[mRNA wt T=30m |mRNA wt T=4h |mRNA DhrrA T=0h |mRNA DhrrA T=30m
783,2 319,1 5,9 160,5 103,2
146,9 344,0 222,8 169,4 166,3
7,8 2,0 3,6 2,4 0,6
494,5 397,9 287,3 80,6 88,9
306,1 327,4 201,3 66,6 50,4
165,9 302,2 181,6 56,6 50,7
31,6 114,3 88,2 26,0 26,2
57,0 427,7 8,4 147,6 96,4
42,1 5,4 39,3 9,4 0,3
37,5 47,5 14,2 29,1 19,8
50,5 39,6 16,2 34,2 19,4
39,6 90,2 19,4 29,6 32,9
86,2 116,4 34,9 77,2 50,3
69,7 36,7 60,2 20,7 14,8
1917,1 2911,0 2339,4 392,3 884,6
1156,2 2662,4 2224,9 278,2 768,3
458,1 2731,7 2527,3 229,8 798,8
634,7 578,7 24,9 364,1 261,3
276,6 580,5 17,8 320,0 253,6
537,5 3066,3 45,3 705,1 926,5
1863,7 4490,5 27,0 1442,6 1033,9
19,4 8,6 77,7 3,0 3,0
48,5 32,8 6,7 18,9 12,7
29,7 17,3 19,7 12,8 7,9
873,3 449,8 145,3 850,1 218,0
3615,4 2977,0 54,7 2088,5 1365,4
321,7 183,1 246,2 141,7 83,5
701,1 228,4 772,2 517,3 111,3
35,6 16,4 43,8 13,6 5,2
440,6 466,9 147,2 134,2 124,0
140,1 27,1 228,7 27,0 12,8
415,1 29,5 215,7 52,6 13,6
508,0 728,0 395,4 134,3 156,3
77,0 55,3 105,7 33,8 26,1
1672,9 600,3 42,2 1190,0 207,5
2600,5 682,1 60,3 1874,0 314,8
393,1 139,4 77,5 149,2 65,4
518,3 297,8 119,3 202,5 97,0
29,9 22,5 51,6 16,1 10,5




27,8 24,0 50,7 17,9 11,8
613,8 368,3 8,3 300,9 89,8
57,5 49,0 17,5 38,9 21,6
2393,3 1757,4 1855,8 2649,0 825,0
127,2 736,5 83,3 120,1 297,6
302,1 434,4 172,6 171,1 211,4
53,1 112,9 48,8 42,1 54,9
173,0 368,6 74,8 78,8 171,9
2544,1 4176,3 834,1 3478,9 1899,3
3043,1 4005,4 883,6 3669,2 1828,7
3417,4 3789,5 758,6 3412,6 1567,9
4638,9 4619,6 946,1 4230,5 1871,9
5218,2 4722,5 1051,6 4286,1 2202,4
411,2 728,0 294,8 316,8 321,9
382,6 823,1 302,5 338,8 342,5
184,5 399,9 181,9 208,7 198,5
1217,0 447,6 467,2 735,7 177,9
494,7 736,1 327,6 305,5 338,3
135,4 183,8 90,8 98,1 86,3
20,8 26,5 10,8 14,0 12,7
109,7 122,2 54,1 50,9 57,2
22,6 15,1 11,8 13,0 6,6
1096,6 3586,5 265,7 851,3 1615,4
1629,4 565,0 1067,6 1799,1 204,8
3069,0 1111,2 852,6 3750,8 251,3
2340,6 1037,4 848,4 2908,1 213,2
2834,9 2472,9 931,9 3460,9 431,2
2765,7 3056,9 2443,1 3448,2 1299,4
34,7 4329,7 11,2 2,8 2134,6
55,3 113,0 27,6 40,7 48,0
108,4 196,0 87,6 90,9 97,9
204,1 146,9 135,7 79,5 72,3
441,4 656,1 325,5 243,1 242,3
1531,9 4192,8 2001,6 533,1 1209,8
2308,3 4502,3 1893,6 612,3 1254,2
2729,9 4308,4 1782,9 692,9 1294,4
3935,0 4547,1 1818,0 965,4 1446,9
1375,0 2402,0 1615,9 575,2 824,0
2698,8 3552,2 2684,1 1037,3 1403,6
371,3 475,9 337,4 341,6 138,6
185,3 80,4 263,1 8,3 9,6
295,1 156,7 228,5 145,9 54,2
61,0 16,9 212,8 13,9 8,4
616,9 252,4 25,5 190,1 106,2
817,0 323,1 19,9 207,6 77,2




1150,5 606,2 36,7 349,9 132,0
2832,7 1115,4 156,2 2377,9 555,3
5111,6 2096,4 232,9 5046,4 999,5
143,3 298,3 821,6 49,7 62,5
4,4 6,6 7,3 3,9 1,6

5,2 6,7 5,9 1,8 1,5
349,7 1095,0 285,3 877,5 491,2
571,8 1357,7 18,0 859,1 399,3
891,9 1635,4 12,3 855,5 432,6
1213,2 1710,5 11,0 845,1 438,1
1362,4 1661,0 15,7 756,1 465,6
26,5 20,5 12,0 14,0 9,9
61,2 33,8 6,5 36,9 8,0
32,7 59,3 9,0 21,7 29,2
3107,7 5452,0 3251,3 1682,3 2653,4
212,1 944,4 26,1 94,1 164,4
8886,8 7276,4 611,9 4250,2 2372,2
45,7 35,7 576,0 87,0 16,6
283,1 1219,4 86,3 197,3 579,0
284,8 487,7 311,2 195,9 172,1
3076,8 629,6 1200,2 4006,3 144,1
35,4 22,2 36,7 41,0 9,9
19,8 23,7 33,5 31,4 9,4
393,2 430,1 327,3 106,2 126,7
12,4 12,0 4,8 8,2 5,2
4747,4 5718,7 15,8 4079,5 2666,5
825,6 454,8 8,7 238,8 170,1
7,5 9,4 5,8 5,7 2,2
430,2 422,9 189,2 92,0 98,6
74,6 260,6 15,5 104,4 122,7
383,5 166,1 178,6 212,9 60,1
2579,1 569,4 83,9 1161,8 178,5
4147,0 905,9 134,2 1808,7 311,1
129,2 557,6 59,9 89,6 262,7
1,5 7,1 10,4 1,5 2,4
181,8 804,8 57,2 198,6 265,1
1436,3 6136,9 43,1 1447,1 2940,8
459,2 4055,7 22,0 685,8 1736,3
1250,1 2882,3 27,1 647,3 1133,8
1870,4 2441,3 31,0 957,1 923,6
779,6 978,2 23,3 474,2 440,8
15,5 22,6 22,4 6,2 8,7




25,0 31,0 19,7 7,3 14,2
107,6 212,5 77,3 17,8 56,2
45,5 91,0 37,4 6,6 24,3
310,8 263,7 22,4 17,4 18,8
993,8 1177,7 27,2 610,7 554,7
94,1 35,1 49,3 86,0 16,5
127,1 33,4 56,0 62,0 13,6
1182,9 1521,5 10,6 602,5 241,8
1464,6 2591,0 28,3 1863,5 1236,0




XIl minimal medium supplemented with 2%
e wild type strain (green) and a AhrrA strain
:nted genes were filtered for at least two-

mRNA DhrrA T=4h

Log2 DhrrA/WT T=0h

Log2 DhrrA/WT T=30m

Log2 DhrrA/WT T=4h

20,4 2,3 -1,6 1,8
155,6 0,2 -1,0 -0,5
18,7 1,7 -1,7 2,4
133,9 2,6 2,2 1,1
99,2 2,2 2,7 -1,0
87,6 -1,6 2,6 1,1
43,6 0,3 2,1 -1,0
6,4 1,4 2,1 0,4
20,8 2,2 4,1 0,9
6,9 0,4 -1,3 -1,0
11,0 0,6 -1,0 0,6
15,2 0,4 -1,5 0,4
25,5 0,2 -1,2 0,5
14,4 -1,8 1,3 2,1
760,6 2,3 1,7 -1,6
774,9 2,1 -1,8 -1,5
839,3 -1,0 -1,8 -1,6
24,2 0,8 1,1 0,0
19,4 0,2 -1,2 0,1
39,9 0,4 1,7 0,2
30,1 0,4 2,1 0,2
72,5 2,7 -1,5 0,1
5,4 -1,4 1,4 0,3
17,5 -1,2 -1,1 0,2
148,4 0,0 -1,0 0,0
304,6 0,8 1,1 2,5
153,9 -1,2 1,1 0,7
907,8 0,4 -1,0 0,2
106,2 -1,4 1,7 1,3
92,2 -1,7 -1,9 0,7
718,5 2,4 1,1 1,7
644,6 -3,0 1,1 1,6
119,4 -1,9 2,2 1,7
339,2 -1,2 1,1 1,7
27,4 0,5 -1,5 0,6
37,4 -0,5 -1,1 0,7
33,4 -1,4 1,1 1,2
135,6 -1,4 1,6 0,2
61,5 0,9 1,1 0,3




69,2 -0,6 -1,0 0,4
9,1 -1,0 -2,0 0,1
14,7 -0,6 -1,2 -0,3
1779,5 0,1 -1,1 -0,1
71,6 -0,1 -1,3 -0,2
62,1 -0,8 -1,0 -1,5
45,0 -0,3 -1,0 -0,1
60,3 -1,1 -1,1 -0,3
830,8 0,5 -1,1 0,0
869,8 0,3 -1,1 0,0
766,3 0,0 -1,3 0,0
954,6 -0,1 -1,3 0,0
1067,8 -0,3 -1,1 0,0
243,7 -0,4 -1,2 -0,3
267,3 -0,2 -1,3 -0,2
157,0 0,2 -1,0 -0,2
332,6 -0,7 -1,3 -0,5
227,1 -0,7 -1,1 -0,5
63,5 -0,5 -1,1 -0,5
6,3 -0,6 -1,1 -0,8
33,9 -1,1 -1,1 -0,7
10,4 -0,8 -1,2 -0,2
206,4 -0,4 -1,2 -0,4
910,0 0,1 -1,5 -0,2
510,3 0,3 -2,1 -0,7
510,7 0,3 -2,3 -0,7
548,2 0,3 -2,5 -0,8
1981,3 0,3 -1,2 -0,3
185,5 -3,7 -1,0 4,0
14,6 -0,4 -1,2 -0,9
87,7 -0,3 -1,0 0,0
106,6 -1,4 -1,0 -0,3
147,8 -0,9 -1,4 -1,1
1227,5 -1,5 -1,8 -0,7
1153,9 -1,9 -1,8 -0,7
1034,6 -2,0 -1,7 -0,8
1039,4 -2,0 -1,7 -0,8
934,6 -1,3 -1,5 -0,8
1371,5 -1,4 -1,3 -1,0
169,3 -0,1 -1,8 -1,0
19,1 -4,5 -3,1 -3,8
159,1 -1,0 -1,5 -0,5
260,7 -2,1 -1,0 0,3
15,4 -1,7 -1,2 -0,7
17,5 -2,0 -2,1 -0,2




34,0 -1,7 -2,2 -0,1
60,4 -0,3 -1,0 -1,4
93,3 0,0 -1,1 -1,3
230,6 -1,5 -2,3 -1,8
1,1 -0,2 -2,0 -2,7
2,1 -1,6 -2,2 -1,5
225,6 1,3 -1,2 -0,3
61,0 0,6 -1,8 1,8
63,4 -0,1 -1,9 2,4
72,0 -0,5 -2,0 2,7
79,0 -0,8 -1,8 2,3
8,1 -0,9 -1,1 -0,6
10,6 -0,7 -2,1 0,7
9,0 -0,6 -1,0 0,0
1786,1 -0,9 -1,0 -0,9
35,7 -1,2 -2,5 0,5
2635,8 -1,1 -1,6 2,1
171,2 0,9 -1,1 -1,8
93,3 -0,5 -1,1 0,1
208,8 -0,5 -1,5 -0,6
674,8 0,4 -2,1 -0,8
26,8 0,2 -1,2 -0,5
25,5 0,7 -1,3 -0,4
178,9 -1,9 -1,8 -0,9
2,6 -0,6 -1,2 -0,9
166,0 -0,2 -1,1 3,4
12,5 -1,8 -1,4 0,5
2,2 -0,4 -2,1 -1,4
137,5 -2,2 -2,1 -0,5
9,7 0,5 -1,1 -0,7
89,0 -0,8 -1,5 -1,0
151,9 -1,2 -1,7 0,9
408,9 -1,2 -1,5 1,6
56,7 -0,5 -1,1 -0,1
14,2 -0,1 -1,6 0,4
43,7 0,1 -1,6 -0,4
26,3 0,0 -1,1 -0,7
13,0 0,6 -1,2 -0,8
16,0 -0,9 -1,3 -0,8
23,4 -1,0 -1,4 -0,4
20,7 -0,7 -1,2 -0,2
10,7 -1,3 -1,4 -1,1







Signal transduction mechanisms

Cell division, chromosome partitioning
Unknown function

Unknown function

Unknown function

General function prediction only
General function prediction only
Amino acid transport and metabolism

Unknown function

Amino acid transport and metabolism

Amino acid transport and metabolism

Inorganic ion transport, metabolism, and storage
Inorganic ion transport, metabolism, and storage
Cell wall/membrane/envelope biogenesis

Central carbon metabolism; Anaerobic metabolism; Respiration and oxidative phosphorylation
Central carbon metabolism; Anaerobic metabolism; Respiration and oxidative phosphorylation
Central carbon metabolism; Anaerobic metabolism; Respiration and oxidative phosphorylation
General function prediction only

General function prediction only

Signal transduction mechanisms; Inorganic ion transport, metabolism, and storage

Inorganic ion transport, metabolism, and storage

Transport and metabolism of further metabolites

General function prediction only

Unknown function

General function prediction only

Amino acid transport and metabolism

Unknown function

Coenzyme transport and metabolism

Inorganic ion transport, metabolism, and storage; Transport and metabolism of further metabolites
Unknown function

Inorganic ion transport, metabolism, and storage; Transport and metabolism of further metabolites
Inorganic ion transport, metabolism, and storage; Transport and metabolism of further metabolites
Lipid transport and metabolism

Signal transduction mechanisms

Carbon source transport and metabolism

Carbon source transport and metabolism

Unknown function

Transport and metabolism of further metabolites

Carbon source transport and metabolism




Carbon source transport and metabolism

Amino acid transport and metabolism

Signal transduction mechanisms

Carbon source transport and metabolism; signal transduction mechanisms

DNA replication, recombination, repair, and degradation; Transcription including sigma factors, RNA processin

General function prediction only

Inorganic ion transport, metabolism, and storage

Signal transduction mechanisms

Coenzyme transport and metabolism

Coenzyme transport and metabolism

Coenzyme transport and metabolism

Coenzyme transport and metabolism

Coenzyme transport and metabolism

Central carbon metabolism

Central carbon metabolism

Central carbon metabolism

Central carbon metabolism

Signal transduction mechanisms

Prophage genes

Prophage genes

Prophage genes

Prophage genes

Unknown function

Carbon source transport and metabolism

Signal transduction mechanisms

Central carbon metabolism

Carbon source transport and metabolism

Carbon source transport and metabolism

Transport and metabolism of further metabolites

Coenzyme transport and metabolism

Unknown function

Unknown function

Cell wall/membrane/envelope biogenesis

Respiration and oxidative phosphorylation

Respiration and oxidative phosphorylation

Respiration and oxidative phosphorylation

Respiration and oxidative phosphorylation

Respiration and oxidative phosphorylation

Respiration and oxidative phosphorylation

Unknown function

Transport and metabolism of further metabolites

Central carbon metabolism

Central carbon metabolism

Signal transduction mechanisms

Carbon source transport and metabolism




Carbon source transport and metabolism

Carbon source transport and metabolism

Carbon source transport and metabolism

Carbon source transport and metabolism

Carbon source transport and metabolism

Carbon source transport and metabolism

General function prediction only

General function prediction only

General function prediction only

General function prediction only

General function prediction only

DNA replication, recombination, repair, and degradation

Central carbon metabolism

General function prediction only

Respiration and oxidative phosphorylation

Amino acid transport and metabolism

Amino acid transport and metabolism

Central carbon metabolism

Protein turnover and chaperones

Transport and metabolism of further metabolites

Carbon source transport and metabolism

Carbon source transport and metabolism

Carbon source transport and metabolism

General function prediction only

Unknown function

Amino acid transport and metabolism; Inorganic ion transport, metabolism, and storage

Inorganic ion transport, metabolism, and storage

Unknown function

Unknown function

Unknown function

Carbon source transport and metabolism

Carbon source transport and metabolism

Carbon source transport and metabolism; Respiration and oxidative phosphorylation

Protein turnover and chaperones

Unknown function

General function prediction only

Unknown function

Unknown function

Inorganic ion transport, metabolism, and storage

Inorganic ion transport, metabolism, and storage

Unknown function

Post-translational modification; Signal transduction mechanisms




Signal transduction mechanisms

Unknown function

Inorganic ion transport, metabolism, and storage

Transport and metabolism of further metabolites

General function prediction only

Transport and metabolism of further metabolites

Carbon source transport and metabolism

General function prediction only

Inorganic ion transport, metabolism, and storage







g and modification



